Common Polyatomic Ions

Memorize these!

$-\mathbf{1}$	
acetate	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$
bromate	BrO_{3}^{-}
chlorate	ClO_{3}^{-}
cyanide	CN^{-}
hydroxide	OH^{-}
iodate	IO_{3}^{-}
chlorate	ClO_{3}^{-}
permanganate	MnO_{4}^{-}
thiocyanate	SCN^{-}

$-\mathbf{2}$	
carbonate	$\mathrm{CO}_{3}{ }^{2-}$
chromate	$\mathrm{CrO}_{4}{ }^{2-}$
dichromate	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
oxalate	$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
peroxide	$\mathrm{O}_{2}^{{ }^{-}}$
sulfate	$\mathrm{SO}_{4}{ }^{2-}$
sulfite	$\mathrm{SO}_{3}{ }^{2-}$
thiosulfate	$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$
hydrogen phosphate	$\mathrm{HPO}_{4}{ }^{2-}$

-3 phosphate $\mathrm{PO}_{4}{ }^{3-}$ +1 ammonium NH_{4}^{+}

In the sets below, notice the relationship between the prefixes $\&$ endings \& \# of oxygens. These rules apply to other polyatomic ions in addition to the examples below. You don't need to memorize all of these as long as you know the prefixes and endings. I suggest that you just memorize the "ate".
per...ate
...ate
...ite
hypo...ite

periodate	IO_{4}^{-}
iodate	IO_{3}^{-}
iodite	IO_{2}^{-}
hypoiodite	IO^{-}

pernitrate	NO_{4}^{-}
nitrate	NO_{3}^{-}
nitrite	NO_{2}^{-}
hyponitrite	NO^{-}

perchlorate	ClO_{4}^{-}
Chlorate	ClO_{3}^{-}
Chlorite	ClO_{2}^{-}
hypochlorite	ClO^{-}

The polyatomic ions below all contain the hydrogen ion. When you add an $\mathrm{H}+$ to an existing ion the net charge on the new ion is less negative by one. These ions can be named just by adding the word hydrogen to the beginning of the ion name OR the prefix "bi". 'bi' indicates hydrogen, it does not mean two.

For example, phosphate is $\mathrm{PO}_{4}{ }^{3 .}$. When you add a hydrogen to make hydrogen phosphate, the formula is $\mathrm{HPO}_{4}{ }^{2-}$. Notice that the charge changed from -3 to -2. Add another hydrogen to get dihydrogen phosphate, $\mathrm{H}_{2} \mathrm{PO}_{4}$. You should be able to apply this concept to any of the basic polyatomic ions. Some common ones are listed below.

bicarbonate (hydrogen carbonate)	$\mathrm{HCO}_{3}{ }^{-}$
bisulfate (hydrogen sulfate)	HSO_{4}^{-}
bisulfide (hydrogen sulfide)	HS^{-}

