$A^{-}=$Conj bree BuFFERS $\quad O H^{\circ}=$ stroy bare of weak acid (so, weak base)
n some situations, a change in pH can cause extreme reactions to occur. For example, the pH of blood should be from 7.38-7.42. If it changes to 7 or 8 , we would die. We must therefore have a mechanism to protect against even a slight change in pH . The chemical that does this is called a \qquad buffer \qquad Buffers maintain pH, they do not make solutions neutral.

Buffer Components:

$$
\text { Ex. }\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \& \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)
$$

Buffers are made of 2 solutes that contain an acid/base
(HAMA)

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{CO}_{3} \& \frac{\mathrm{HCO}}{*} \text { in blood }
\end{gathered}
$$

$\left(\mathrm{NH}_{4}{ }^{+}\right.$\& \qquad NH_{3} ,

How Buffers Work:
A buffer must neutralize any strong acid or base added so that the original pt t remains constant One solute in the buffer will neutralize the acid, the other solute neutralizes the base.

Consider a buffer of (HA \& $\left.A^{-}\right)$. What happens if a strong acid is added to this solution?

$$
\mathrm{H}^{+} \mathrm{stron} \text { arid }+A^{-} \longrightarrow(H A)(\text { not equil) }
$$

none of these species change the PH!
calculating the pH of a Buffered Solution:
To calculate pH , write either the k_{a} or the k_{b} reactions that are occurring. Use the equation to determine \qquad the $\left[\mathrm{H}^{+}\right]$ which can be used to calculate pH .

Ex. 1: A buffer solution contains 0.090 M acetic acid and 0.11 M sodium acetate. What is the pH ? (82 $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} / \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$
$\mathrm{Ka} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{kb} \quad \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-}$
Use either one

$$
\begin{aligned}
& \begin{array}{cccc}
& \mathrm{HA} & \gtrless & \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}^{-} \\
i & +\mathrm{H}^{+} \\
0 & .090 & .11 & 0 \\
0 & -x & +x & +x \\
e .09-x & .11+x & x
\end{array} \\
& k_{a}=1.8 \times 10^{-5}=\frac{(11+x)(x)}{.09-x \longrightarrow 0} \\
& x=1.5 \times 10^{-5} \\
& =\left[\mathrm{H}^{+}\right]
\end{aligned}
$$

The pH of a buffer depends on 1) $\mathrm{Ka}_{\text {a }}$ or K_{b} and 2) the ratio of [H A]/[A-]. Diluting a buffer (does, does not) change its pH because it dues not change T or Ka

The basic k_{a} expression can be rearranged to another useful equation known as Henderson -

$$
\begin{aligned}
& \text { Hansel bach Eu; }\left[\mathrm{H}^{+}\right]=\frac{\mathrm{ka}\left[\mathrm{HA}^{-}\right]}{\left[\mathrm{A}^{-}\right]} \\
& k_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]} \quad \text { take }[\log \text { of th }
\end{aligned}
$$

$$
\begin{aligned}
& \left(P H=p k a+\log \left(\frac{[A-J}{[A A]}\right)\right.
\end{aligned}
$$

According to the HH Eqn, when [acid] = [base], $\quad \mathrm{pH}=\mathrm{pH} a$ \qquad
Simplifications (neglecting x) will always work for buffers, therefore the amount of acid or base ionized when a strong acid or base is added to a buffer can be neglected Therefore, the initial concentrations can be plugged straight into the HHE Eqn. in order to determine $\left[H^{+}\right] \&$ pH.

Ex. 2: A buffer solution contains 0.090 M acetic acid and 0.11 M sodium acetate. What is the pH ? (This is the same as Ex. 1. Solve this now using the HH Eqn.)

$$
\begin{aligned}
& p H=p k a+\log \left(\frac{\left[A^{-}\right]}{[H A]}\right) \\
& p H=-\log \left(1.8 \times 10^{-5}\right)+\log \left(\frac{.11}{.09}\right) \\
& 4.74+.08715
\end{aligned}+4.83 .
$$

Calculating $\Delta \mathrm{pH}$ when a Strong Acid or Base is Added to a Buffer System:
To determine changes in pH , you must first determine the original PH of the buffered solution. Then you must neutralize the strong base or acid that has been added. Last, to figure out the pH , you must determine the amount of $\left[H^{+}\right]$that remains.

Ex. 3: Calculate the $\Delta \mathrm{pH}$ that occurs when 0.010 moles of NaOH is added to 1.0 L of the buffered solution in Ex. 1. Compare this to adding the same amount of NaOH to pure water.
$\# 1: \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} / \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{OH}^{-}$
$.090 \mathrm{M} .11 \mathrm{M} \quad .01 \mathrm{M}$

1. Original $\mathrm{pH}=4.83$
2. Neutralize OH^{-}

OR.
3. Use HH Equ.

$$
p H=p k_{a}+\log \left(\frac{B}{A}\right)
$$

$$
=-\log 1.8 \times 10^{-5}+\log \left(\frac{.12}{.08}\right)
$$

$\mathrm{PH}=4.9$
NaOH in $\mathrm{H}_{2} \mathrm{O}$
$\left[\mathrm{OH}^{-}\right]=.01 \quad \mathrm{POH}=2$

$$
\left.\begin{array}{cccc}
& \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} & \mathrm{Z} & \mathrm{H}^{+}+ \\
\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}- \\
\mathrm{D} & .08 & 0 & .12 \\
e & -x & \mathrm{Ka} \\
\text { e } & 0 \mathrm{x}-x & +x \\
& x & .12+x
\end{array}\right]
$$

Preparing a Buffer of a Given pH：
Buffers are made so that the ratio of HA／，A^{-}is near 1．This makes the $\mathrm{pH}=\mathrm{p} \mathrm{Ka}$－
1）Choose a weak acid with a pk_{a} near the needed pH
\qquad pH° （ $\mathrm{pH}=\mathrm{pk}_{\mathrm{a}} \pm \xrightarrow{\text {（ }}$ ）
2）Adjust the ratio to get the exact desired \qquad
of［湖う $/ \subset H A 〕$
Ex．4：A solution buffered at $\mathrm{pH}=5$ is needed．Can we use $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} / \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ \＆in what ratio？
1）Check to see if $\mathrm{pH}=$ pk ± 1 ：

$$
k_{a}=1.8 \times 10^{-5} \quad p k_{a}=4.7 \quad \text { solves }
$$

2）Adjust the ratio：

$$
k_{a}=\frac{\left[H^{+}\right]\left(A^{-}\right)}{[H A]} \text { rearayse to solve tor }
$$

$$
\begin{aligned}
& \frac{k a}{\left[H^{+}\right]}=\frac{\left[A^{-}\right]}{[H A]} \\
& \mathrm{pH}=5.5 \\
& {\left[\mu^{+}\right]=10^{-5}} \\
& \frac{1.8 \times 10^{-5}}{1 \times 10^{-5}}=\frac{1.8}{1} \text { or } \frac{.18 \mathrm{M}}{.1} \mathrm{M}
\end{aligned}
$$

Buffer Capacity：
There is a limit to the amount of strong base or acid that a buffer can neutralize．This limit is known as buffer capacity Buffer capacity is determined by concentrations NOT by \qquad the ratio

Ex．5：\quad A student prepared 1 L of a $1 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $1 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ buffer for an experiment where 0.15 mol of H^{+}was to be generated．If there enough buffer capacity to neutralize the H^{+}without changing the pH by more than ．1？－So Calculate pH of buffer ह＇， $\mathrm{pH} \omega \mathrm{H}^{+}$added
Neutralize： s．pHo
3 offer：
（1）pHo Buffer
Either ka or K_{b}
alate new H^{+}u ka （Use HH）
$p H=p \mathrm{kan}+\log \left(\frac{3}{t}\right)$
$-\log 1.8 \times 10-55+\log \left(\frac{85}{1.15}\right)$
$\mathrm{pH}=4.61$

